V 1 – pH-Wert von wasserfreier Essigsäure

Dieser Versuch soll zeigen, dass 100%-ige Essigsäure (Eisessig) nicht sauer reagiert und der pH-Wert erst bei Zugabe von Wasser sinkt.

Gefahrenstoffe		
Eisessig	H: 226, 314	P: <u>2</u> 80, 301+330+331,
		305+351+338
Na ₂ SO ₄	Н: -	P: -
Dest. Wasser	Н: -	P: -

Materialien: Becherglas, pH-Papier,

Chemikalien: Eisessig (wasserfrei), destilliertes Wasser

Durchführung: Die Essigsäure muss vorher evtl. mit Na₂SO₄ getrocknet werden.

Es werden 10 mL Eisessig in das Becherglas gegeben und der pH-Wert wird sofort gemessen. Anschließend werden einige Tropfen Wasser in den Essg

gegeben und der pH-Wert wird gemessen.

Beobachtung: Zunächst ist der pH-Wert im Bereich 5-6. Nach Wasserzugabe sinkt der

pH-Wert auf 1-2.

Abb. 1 - Links: pH-Papier im Eisessig, Mitte und Rechts: pH-Papier nach einigen Tropfen Wasser.

Deutung:

Die 100%-ige Essigsäure kann bei Abwesenheit von Wasser keine Hydroxonium-Ionen bilden. Erst wenn Wasser dazu gegeben wird, kann das H $^+$ abgegeben werden.

 $CH_3COOH_{(aq)} + H_2O_{(l)} \rightarrow CH_3COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$

Das gilt im Allgemeinen für alle Säuren.

Entsorgung: Die saure Lösung wird im Säure-Base Abfall entsorgt.

V1 - pH-Wert von wasserfreier Essigsäure

Literatur:

http://daten.didaktikchemie.uni-bayreuth.de/experimente/stan dard/0706_phwert_saeuren.htm Autor: Walter Wagner (Stand:

05.08.13)

Unterrichtsanschlüsse: Dieser Versuch eignet sich als Erarbeitungsexperiment und Problemexperiment, da man hier die Rolle des Wasser bei einer Säure-Base Reaktion thematisieren kann. Er eignet sich um das Verständnis noch weiter zu vertiefen und nicht unbedingt als Einstiegsversuch, da die pH-Skala bekannt sein muss, sowie die Reaktion von